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Quantum stochastics: the passage from a relativistic to a 
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Physics Department, Technion-Israel Institute of Technology, Haifa, Israel 

Received 2 June 1983 

Abstract. Feynman’s path integral for the one-dimensional Dirac particle uses paths for 
which A x  - A t .  For non-relativistic path integrals, typical paths satisfy (Ax)2 - At  (as in 
Brownian motion). We demonstrate the consistency of these two stochastic schemes and 
show how the relativistic formalism contains within itself the scale of the transition regime, 
namely Ax - h/mc, the Compton wavelength. 

1. Introduction 

The Dirac equation for a particle of mass m in one space dimension may be written 

-io, a*/ax - mox+ = i a + / a t  (1) 

where f i  = c = 1, a, and a, are Pauli spin matrices and $ has two components. Feynman 
observed that the retarded propagator for this equation could be obtained from the 
following limiting process: 

where E = ( t b -  t ,)/N, CY and p take the values ‘right’, and ‘left’ and O P a ( R )  is the 
number of paths of exactly N steps, each of length E (or C E ) ,  that start at a in the 
direction a ,  end at b in the direction p and reverse direction R times (see Feynman 
and Hibbs (1965) for pictures). The indices CY and p refer to the components of $. 
In this sum over paths, the space and time steps are of the same size in the sense that 
they scale in the same way with N 

For non-relativistic physics the propagator of a free particle of mass m in one 
dimension takes the form 

Now ‘all’ paths are contemplated, but it is a well known feature of the path integral 
that the bulk of the contributors to the sum satisfy   AX)^ - At .  The term ‘bulk of.the 
contributors’ achieves a more precise meaning in the corresponding Brownian motion 
problem (let i +  -1 in (3)) in that ( A x ) ’ -  A t  almost everywhere in Wiener measure. 

i Visiting Fulbright Scholar on leave (until September 1983) from the University of Texas, Austin, Texas 
78712. 
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Thus for a variety of reasons it makes sense to assign a diffusion constant 

(Ax)*/Af = l / m  ( = h / m )  (4) 

to non-relativistic quantum mechanical particles. 
The non-relativistic paths thus look rather diff eEnt  f r z t h e i r  relativistic counter- 

parts: if A t  = E = ( f b  - r a ) / N  we have that Ax - JAP J I / N ,  so that for N +  0;) the 
spatial steps are far larger than those in the relativistic case, where space and time 
steps scale in the same way. 

In this paper we reconcile these results in the following way: although paths with 
all possible numbers of bends enter (2) the major contributors to the sum are those 
with very few bends (as we shall see more precisely below) and in fact successive steps 
are highly correlated in direction with one another. The correlation persists for roughly 
l / ( & m )  steps, which is to say that an actual reversal will typically occur only after a 
time l / m  ( =  & ( l / & m ) )  in the rest frame of the particle. The number of reversals is 
therefore independent of the fineness ( N )  of the original division of the time interval. 
Thus if one wishes to describe a slowly moving particle by a sequence of collective 
steps of independent direction, the minimum collective step size (in space or in time) 
is of order l /m.  This value, l / m ,  is the minimum Ax for which it is reasonable to 
assign to the particle a Markov process without memory. Moreover during such a 
collective step the velocity of the particle is 1 ,  that is c, since it is taking elementary 
steps of equal size in space and time, all in the same direction. Thus for this interval, 

Ax/At = 1. 

Combining this with Ax = l / m  we recover equation (4). 
In the remainder of this paper we justify the foregoing picture, first by direct 

calculation of the 'typical' number of bends in a path and then by making use of a 
correspondence due to Gersch (1981) between the sum (2) and the one-dimensional 
Ising model. 

2. Calculation of the typical number of reversals 

Our goal is to estimate the number of reversals of direction that occur for the bulk 
of the contributors to the sum in (2). Consider then a path with R bends that enters 
the sum K-+. It leaves moving right and arrives moving left. It makes exactly 
l + ( R - 1 ) / 2  turns to the left and ( R - 1 ) / 2  turns to the right (see figure 1). An 
arbitrary path satisfying these conditions can be generated by sprinkling (R - 1)/2 
arrows at arbitrary positions on the lower right side of the rectangle, signifying left 
turns, and the same number of arrows on the lower left side, signifying right turns. 
Suppose a total of N steps are taken, P to the right and Q to the left. The net distance 
travelled is b - a  = (P- 0 ) s  M. It follows that 

( 5 )  P =  ;(N + M )  0 = 4(N - M )  -N s ( P - Q )  = M S  N = ( P +  Q). 

The ( R  - 1)/2 arbitrary left turns can be made at any of the P right-moving steps 
except the (last) one where the particle reaches the upper right side of the rectangle 
(where it makes a compulsory left turn). The ( R  - 1) /2  right turns also may appear 
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'I 

l a  b X 

Figure 1. Space-time diagram for a path with seven bends that starts moving right and 
arrives moving left. A total of N steps are taken, P to the right, Q to  the left. The net 
distance covered is (P- Q ) E  and the time elapsed is (P+ Q)E.  With seven bends, there 
are three arbitrarily located left turns, three arbitrarily located right turns and a compulsory 
left turn just before arrival. 

at any left-moving step but the last. Therefore 

P- 1 Q-1 

since aside from the constraints just mentioned there is a one-to-one correspondence 
between paths and sprinklings of arrows. Clearly R is odd for @-+ and 

O s & R  - 1 )  S min(P- 1, Q- 1). 

In the limit N + 00, only values of R for which R / N  + 0 will contribute to the sum 
(2).  To see this, suppose R / N  = A for some fixed A > 0. Since a P a ( R )  < 2N we have 

@pu(R)(&m)R < 2 N (  = [2(m(r ,  - r,)/N)*IN ( 7 )  
and the last expression tends to zero faster than any power of N, whereas the terms 
summed below individually go as 1/N. For Ib-al< t b -  to, PIN and Q/N remain 
finitein thelimit so wealso have R /P+Oand  R/Q+O.  (For Ib -aI= tb - to  no bends 
can occur and there is exactly one path. The propagator is therefore equal to unity 
on the light cone, which in the continuum limit coresponds to a &function singularity.) 

When I b - a 1 < th - t ,  we may write 
P -  1 p i ( R - I )  

({(R - 1)) =+(R - l)! 

the equality being exact in the limit N + a .  A similar equation holds for Q from 
which, together with (8) ,  ( 6 )  and (2), we obtain 

K-+ = (i&m)R(PQ):'R-')/[{(R - 1)!12. 
odd R 

(9) 
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Now P Q = : ( N - M ) ( N + M ) = ( N / ~ Y ) ~ ,  where y = ( l - ~ ~ ) - ” ~  with u2=M2/N2= 
( b  - ~ ) ~ / ( t ~  - We thus have 

K-+=? ( im( 2 y  t6 - f a )  )“/[(?)!I2. 
N o d d R  

This sum can be interpreted as a sum over alternatives (which is how Feynman 
presents the entire path integral formalism), each summand being the probability 
amplitude for paths having exactly R bends on the way from a to b. The most likely 
number of bends can then be evaluated by finding the summand of largest absolute 
value. To thisend welet m( tb - t a ) /y=  z a n d w r i t e ( ~ / 2 ) ~ / [ ( ( R - l ) / 2 ) ! ] ~ = e x p f ( R ) .  
Then 

af/aR =iog$z-iog4(R-1).  

The maximum probability occurs when df/aR = 0, i.e., at 

&- = [ ( t b -  ta) /yImc2/k 

and the significant contributions come from R ’s satisfying 

This confirms our original assertion that the number of bends does riot increase 
with N and allows us to conclude that there is an average of one bend per unit time 
in the particle’s rest frame, with time measured in Compton wavelengths (over c). 

The sum (10) may be evaluated exactly in the limit N + Co. Writing R = 2 k  + 1 
and letting the sum now go to k = +m, (10) becomes 

( k m )  2 (-l)k(~/2)2k/(k!)2=ismJ0(z) 
k = O  

where JO is the zeroth order Bessel function of the first kind (see Abramowitz and 
Stegun 1964). Since K-+ vanishes at every other lattice point it must be divided by 
2~ to obtain the continuum form of the propagator. The other components of K,, 
can be similarly evaluated with a small adjustment in the factors @++ and @--: 

P - 2  Q-1 
4R 4R-1 

@++(RI = ( ) ( ), @-- = @++(P- Q). 

Following the same steps as before, one finds for all four components of the continuum 
propagator 

(-t-x)J,(mT)/T iJO( mT) 
iJo( mr) (--t + x) J, (mr)/  7 

K ( X, -t ; 0,O) = - 

where ~ = ( t * - x ’ ) ~ ’ ~  and ( X I <  t. 

3. Equivalence to the Dirac equation and analogy with statistical mechanics 

We next turn to a different method for evaluating the sum in (2), a method that will 
allow us to sharpen the ties to statistical mechanics (Gersch 1981). We shall see in 
what sense the relativistic stochastic process can be considered one in which the 
direction of successive steps is correlated and has correlation length l / m .  To deal 
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with the sum in (2) we define N variables ui, i = 1 , .  , . , N, each U, taking values +1 
or -1, representing a spatial step to the right or left respectively on the ith time step. 
The indices a and p on Kpa are identified with u1 and U,. There is therefore a 
one-to-one correspondence between paths in the sum (2) and sequences {U;} that 
satisfy M = I: U, = ( b  - a ) /  E.  The sum over all such possible sequences therefore 
provides the factor Q p o ( R ) .  Thus 

where only those sequences enter the sum for which M =I: a;. Next note that R can 
be written in terms of the U’S as 

Defining 

v = -4 log(ism) (16) 

it is clear that (14) is essentially the partition function for a one-dimensional Ising 
model with (coupling constant/temperature) = v, and the condition M = Z ui is inter- 
preted as an evaluation of the partition function at fixed magnetisation, rather than 
the more common fixed external field condition. The usual form can be recovered by 
writing the constraint on the sum as a (Kronecker) delta 

Combining we obtain 

where the sums over ui are unrestricted. As usual (Thompson 1972) we define the 
transfer matrix 

~ ( a ,  ~ ‘ ) = e x P t v a c r ’ - t i e ( u + ( + ’ ) -  v ]  (19) 

Kpa =- de  eiMe(LN-l)pa exp[-;ie(a + p ) ] .  (20) 

so that (1 8) becomes 

2T r -= 

The eigenvalues and eigenvectors of L are 

A, =[cos O*(e-4”-sin2 0 ) 1 / 2 ] = [ ~ ~ ~  O*i(sin2 O+E2m2)1/2] 

sin 6 
tan 28 = -. 

Em 
cos( *i7r + 8) .*=( 

By P, we mean the orthogonal projection operators P, =@*a:. From (21) it follows 
that these can be written 
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In this notation Kpa becomes 

K =- C d e  (Pp)pa exp[-$O (a +p)]  elMe 
1 

2 T T T = * l  I:r 
x [cos e + i p (  E2m2 +sin2 e) '/'lN-'. ( 2 3 )  

An interesting contrast to the Ising model emerges at this point since 1A+1= 1A-I and 
neither dominates for large N. We shall see that the decay in correlations is a decay 
in phase rather than magnitude. For N+m the integral over 8 may be evaluated 
through restriction to the region of stationary phase and to this end we consider the 
function 

f ( e )  = i M e + ( N -  1) log[cos 8+ip(E2m2+sin2 ( 2 4 )  

Letting U = M / ( N  - 1) the stationary phase condition a f / d e  = 0 yields 

U = - p  sin B/(E2m2+sin2 e ) ' / *  or sin e = -Emvp/( l -  ( 2 5 )  

Calling the solution to ( 2 5 )  (that is nearer to zero) 8, we find 

a'/l = -i[(N- 1) /Eml(l-  u 2 ) [ 1 -  v2(&2m2+ 1)]1'2. ( 2 6 )  ae2 
Equation ( 2 6 )  indicates that the important contribution to the integral is in a range 
(Ole 1/N. 

At this juncture two pleasing observations can be made. First, from ( 2 5 )  6 (or 
sin e )  is clearly the momentum conjugate to position (up to factors of E).  On the 
other hand, the Ising model context assigns to 8 the role of field conjugate to 
magnetisation. The reason for this consistent parallelism is the common role of the 
Legendre transform. The second observation is that with ( 2 5 )  we can deduce fairly 
easily that K is indeed the propagator for the Dirac equation, (1). Considering only 
the solution of ( 2 5 )  for which 8 = O( E )  we write p = @/E, drop O( 0') terms as well as 
O(E)  terms not raised to high powers and bring K to the form 

xe'P"[1 + i p ~ ( m ~ + p ' ) ~ I ~ ] ~ - '  ( 2 7 )  

where x = b - a  and t = tb - t, = N E .  From (21) it follows that cos 26 = m/(  p 2 +  m2)1'2 
and sin 26 = p / ( p 2 +  m2)1'2. Using (1 + A / N ) N  + eA, ( 2 7 )  becomes 

Finally the sum over p can be done and the result combined in an exponential 

KPa(x, t )  = E- 257 dp eiP"[exp if(mcrx -paZ)Ipa. ( 2 8 )  'I 
This is precisely the operator exp(-ihlt), with H the Hamiltonian of (l),  expressed 
as a Fourier transform. (The ' E '  appears because K as defined acts on the discrete 
spatial lattice, so the ' E '  provides the dx needed to use K as a continuous integral 
operator. Moreover, a second stationary point at (sign J ) T -  e provides a term equal 
in magnitude, but with a relative sign that takes care of the fact that the sum ( 2 )  gives 
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a contribution only for M and N of the same parity. Thus the restriction ‘ N *  M is 
even’ actually implies E + dx/2, but the contribution of the second stationary point 
restores the factor 2.) 

In the representation that we are using for the Dirac equation, upper and lower 
components of $ correspond to amplitudes for velocity eigenstates. Thus a quantity 
that is suitable for indicating the persistence of direction for a slowly moving particle 
may be defined as follows. Let & ( f )  be the probability amplitude for leaving the 
origin moving to the right at time 0, moving left at time t and returning to the origin 
moving right at time T. Thus 

F T ( t )  = [ dyK+-(O, T ;  Y ,  t)K-+(Y, t ;  0 ,  O ) ,  

where we sum over the intermediate spatial coordinate y, now taken as a continuous 
variable. Since it is a probability amplitude that we calculate, the analogy with statistical 
mechanics is not perfect; nevertheless we shall see that the concepts of long-range 
order, correlation length and near degeneracy of eigenvalues have relevance. 

We recall (27) in the form 

K- + = - &[ 1 + p (a, cos 2 S - a, sin 2 a)]- + A r- e ipx 

using the transfer matrix eigenvalues given in (21). For the matrices in (29) only a, 
has a non-zero (-+) element. It follows that 

Using trigonometric identities in (32b) and differentiating with respect to t yields 

dp sin[ ( p 2  + m2)’12( T - 2t)l 
aFr(t) /at  = -m2 =imK-+(O. T-2r). 

( p 2 + m 2 ) ’ l 2  

This can be integrated to obtain 

F r ( t )  =im Iof K-+(O, T-2s)  ds. (33) 

Now let us phrase the physical question. If T >> l / m  there will be many reversals 
of direction in the interval [0, TI. If we look at the initial behaviour with t then & ( t )  
will indicate the likelihood of the first switch in direction through its growth away 
from zero at time zero. Using (13) and the asymptotic (large T )  form of the Bessel 
function we calculate the following 
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For small t we see that indeed F T ( t )  is small and the ratio F,(t)/K++(O, T )  is first 
equal to unity when 2mt = n or t = 77/2m, representing the first time at which the 
particle is sure to be moving left given that it starts and ends moving right at the origin 
at times 0 and T (  >> t )  respectively. 

The role of eigenvalue degeneracy can be seen from (32).  Near degeneracy for 
the eigenvalues (i.e., A T  - A!! - 0) within the important range of integration is sufficient 
to guarantee smallness of F T ( f )  for t<< l / m .  This can also be seen directly from 
( A + / A - ) ~  - [ e x p ( z i m ~ ) ] ~ .  

The two eigenvalues A *  = 1 rt iE( m2 + p 2 ) ” *  specify the time dependence of negative 
and positive energy states (see (27) and the next equation), and it is the interference 
between these that leads to the phenomenon of Zitterbewegung. In our calculations E 

is much shorter than l /m ,  so that the steps in the sum (2) are in fact at a level below 
the Zitterbewegung. The latter phenomenon is then expressed through the alternation 
of direction on the time scale l /m.  

Although we have not discussed ((T~), the expected direction of motion at any 
particular time, it is evident that it vanishes if and only if x does. 

Therefore in the king model treatment of the Dirac particle we have the following 
rough correspondences: x t, magnetisation M, p c, external magnetic field h, m c, 
temperature (more precisely em c,e-2J’T, J =coupling constant, T = temperature), 
l / m  -correlation length. (For the massless particle 1x1 # t is impossible, which corres- 
ponds to having spontaneous magnetisation at the phase transition.) 

One difference in the formalisms is that in statistical mechanics one is truly speaking 
of probabilities, and the correlation length refers to a bona fide conditional probability. 
Moreover, it is obtained from the ratio of the eigenvalues, a quantity whose magnitude 
differs from one and approaches one in the T = 0, h = 0 limit. For the Dirac particle 
I A + / = l A - I  and only the difference A ?  - A ?  has a chance of vanishing. The correlation 
length therefore refers to a persistence of phase. 

4. Concluding remarks 

It is interesting to compare the situation discussed here with the case of Brownian 
motion. If one describes physical Brownian motion by a Markov process with Ax2/At = 
D, where D is a fixed diffusion constant, the limit At, Ax + 0 entails Ax/At + 03. From 
a physical point of view this limit is not relevant, since when At becomes shorter than 
the collision time, successive steps become correlated. This correlation is a consequence 
of the law of inertia. 

In the quantum mechanical situation, we have seen that from the point of view of 
the relativistic treatment, the non-relativistic picture with ‘imaginary diffusion constant’ 
ih/m is invalid when At  becomes shorter than h/mc2 since then successive steps are 
correlated. This transition occurs as the step speed reaches c, and the correlation 
follows from the correct relativistic rule that the amplitude for a sequence of steps is 
( ism)R with R the number of reversals of direction. 

The parallel we have just drawn can be taken further in the context of gauge 
theories with spontaneously broken symmetry in which the mass of the electron arises 
from its interaction with the ground state of a Higgs field. In fact, the sum (2) can be 
thought of as a perturbation expansion, each switch in direction corresponding to 
scattering by an external potential (4). The time l/f(#)= l / m  then corresponds to 
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a ‘collision time’, determined by the ground state expectation value (4) of the Higgs 
field and the strength f of the electron-Higgs coupling. 

Although the origins of the electron mass remain an open question, we feel that 
some progress has been made in extending the analogy of quantum mechanics and 
Brownian motion to a lower microscopic level where random motion is no longer the 
dominant feature and a limiting velocity is present. 
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